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A Note on the Specific Heat of the Hydrogen Molecule.

By David M. Dennison, Ph.D., University of Michigan.

(Communicated by R. H. Fowler, F.R.S. — Received June 3, 1927.)

In a recent article F. Hund∗ has treated the problem of the specific heat of
the hydrogen molecule on the basis of the wave mechanics. The total number
of rotational states are divided due to homopolar character of the molecule
into two groups, to the one of which belong wave functions symmetrical in
the two nuclei, and to the other wave functions which are antisymmetrical
in the nuclei. Hund has suggested that the presence of both groups in
hydrogen may be accounted for by assuming that the nuclei possess a spin,
in which case transitions between symmetrical or between antisymmetrical
states will have their usual intensity but transitions between symmetrical
and antisymmetrical states will be very weak, of the order of the coupling of
the nuclear spins. He then writes the following expression for the rotational
specific heat,

Cr

R
= σ2 d

2

dσ2
logQ,

Q = β[1 + 5e−6σ + 9e−20σ + . . .] + 3e−2σ + 7e−12σ + 11e−30σ + . . . , (1)

where σ = h2/8π2IkT and β is the ratio of the weights of the symmetrical
group of states to the antisymmetrical group. Hund has found that he obtains
a close agreement between (1) and the observed specific heat curve only
when β has about the value 2, that is when the symmetrical states have
twice the weight of the antisymmetrical. He further obtains for this case
I = 1.54× 10−41 gm.·cm.2, the moment of inertia of the H2 molecule.

These values for β and I are not in agreement with the observed features
of the band spectra of H2. A careful analysis of the far ultra-violet bands of
H2 has been made by T.Hori† to whom I am greatly indebted for allowing me
to see the manuscript of his work. Hori finds that the moment of inertia in the
normal state has the value I = 4.67×10−41, and that the transitions between
antisymmetrical terms are about three times as strong as the corresponding
transitions between symmetrical terms, that is β ≈ 1

3 . He does not find any
∗F.Hund, ‘Z. f. Physik’, vol. 42, p. 93 (1927).
†T.Hori, ‘Z. f. Physik’ (in print).
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lines corresponding to transitions between symmetrical and antisymmetrical
terms. These values for β and I when set into (1) lead to a specific heat curve
having a sharp and high maximum, in no way agreeing with the observed
curve.

It now suggests itself that the difficulties encountered in comparing
these sets of data may lie in the assumption that the symmetrical and
antisymmetrical terms can combine, an assumption which determined the
form of (1). The coupling of the nuclear spins with the spin of the molecule,
which determines these transitions, will indeed be very small, much smaller
than the coupling forces between the electronic spins and the orbits which
give rise to the very week transitions between ortho- and para-helium. Let us
make the assumption that the time of transition between a state symmetrical
in the rotation, and an antisymmetrical state is very long compared with
the time in which the observations of the specific heat are made. In this case
we have in effect two distinct gases, the one formed from the symmetrical
states with a specific heat Cs and the other containing the antisymmetrical
states with a specific heat Ca, where

Cs
R = σ2 d2

dσ2 logQs, Qs = 1 + 5e−6σ + 9e−20σ + . . .

Ca
R = σ2 d2

dσ2 logQa, Qa = 3e−2σ + 7e−12σ + 11e−30σ + . . .

 (2)

The final rotational specific heat of the mixture is

Cr

R
=
ρCs + Ca

(1 + ρ)R
, (3)

where ρ is the proportion of symmetrical to antisymmetrical molecules. In
Table I there is given a series of values of Cs/R and Ca/R computed for the
argument σ.

It is evident that since Cs/R rises to a maximum of about 1.5 and Ca/R
rises steadily to unity that ρmust have a value less than 1 if the curve Cr/R is
to fit the experimental curve. The following method was used to determine
ρ. The observed values for the specific heat of H2 as given by Eucken∗,
Scheel and Heuse†, Giacomini‡, Brinkworth§ and Partington and Howe¶ were
plotted against the temperature. An averaging curve was drawn through

∗A.Eucken. ‘Preuss. Akad. d. Wiss.’, p. 141 (1912).
†K.Scheel and H.Heuse, ‘Ann. d. Phys.’, vol. 10, p. 173 (1913).
‡F.A.Giacomini, ‘Phil. Mag.’, vol. 50, p. 146 (1925).
§J.H.Brinkworth, ‘Roy. Soc. Proc.’, A, vol. 107, p. 510 (1925).
¶J.R.Partington and A.B.Howe, ‘Roy. Soc. Proc.’, A, vol. 109, p. 286 (1925).
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Table I.

σ Cs
R

Ca
R

1
3
Cs+Ca

4
3
R

Texp. σTexp. Tcalc.

1.2 0.193 0.0021 0.050 70 84.0 71.2

1.0 0.436 0.0106 0.117 85 85.0 85.5

0.8 0.875 0.0501 0.256 104 83.2 106.9

0.7 1.142 0.1038 0.363 118 82.6 122

0.6 1.374 0.206 0.198 140 84.0 142

0.5 1.464 0.381 0.652 176 88.0 171

0.4 1.341 0.635 0.811 223 89.2 214

0.35 1.224 0.767 0.881 251 87.9 244

0.3 1.111 0.886 0.942 286 85.8 285

these points and this curve was assumed to give the observed variation of
the specific heat with temperature. A value of ρ was selected and Cr/R

computed from (3) and for every point the value of Texp. was read off
the observed curve. A column σTexp. was then constructed which should
consist of constant values if the computed curve agreed exactly with the
observed curve. It was found that the best agreement occurred when ρ = 1

3
that is when the antisymmetrical molecules are three times as numerous as
the symmetrical ones. The values for Cr/R for this case are given in the
fourth column of the table, followed by a column for Texp. and for σTexp.
(Although it is not possible to fix the value of ρ exactly from the present
data, it can be shown that ρ = 1

3 fits the observed curve distinctly better
than ρ = 1

3.5 or ρ = 1
2.7).

Taken the average of σTexp. to be 85.5, we may find the computed
values for the temperature as given in the seventh column of the table.
The agreement between Tcalc. and Texp. is very satisfactory, the greatest
deviation (less than 4 per cent.) is within the limit of the experimental error.
If σT = 85.5 we find the moment of inertia of the hydrogen molecule to be
I = 4.64 × 10−41 gm.·cm.2, in substantial agreement with the moment of
inertia found by Hori from band spectra data.

In conclusion we may say that by assuming that the symmetrical and
antisymmetrical rotational states of the hydrogen molecule do not combine
during a time long compared with the time of the experiment, we obtain a
specific heat curve which follows the observed curve to within the errors of
observation, and that moreover the constants ρ and I are in good agreement
with the values of these constants as found in the band spectrum of H2.

3



[Added June 16, 1927. — It may be pointed out that the ratio of 3
to 1 of the antisymmetrical and symmetrical modifications of hydrogen, as
regards the rotation of the molecule, is just what is to be expected from a
consideration of the equilibrium at ordinary temperatures if the nuclear spin
is taken equal to that of the electron, and only the complete antisymmetrical
solution of the Schrödinger wave equation allowed.∗

While it would not appear possible to produce only the one modification
of the molecule by a combination of two hydrogen atoms since the heat
of dissociation of H2 is so much higher than the difference between the
first rotational states, other experiments might be performed which would
show the non-combining character of these two sets of rotational states
and possibly even allow them to be separated. Indeed, the far ultra-violet
absorption spectrum of H2 at low temperatures would show at once whether
the molecules all go into the zero state of rotation or whether they remain
in the zero and first rotational states in the ratio of 1 to 3 as is suggested in
the present note.]

I wish to express my thanks to Mr. R. H. Fowler for much helpful criticism
and to Prof. T. Hori for the opportunity of seeing the results of his work
before their publication. I wish also to acknowledge with gratitude a stipend
from the University of Michigan.

∗ W.Heisenberg, ‘Z. f. Physik’, vol. 41, p. 239 (1927), in particular see p. 264.
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