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Abstract

Particles with resonant short-range interactions have universal properties
that do not depend on the details of their structure or their interactions
at short distances. In the three-body system, these properties include the
existence of a geometric spectrum of three-body Efimov states and a discrete
scaling symmetry, which leads to log-periodic dependence of observables on
the scattering length. Similar universal properties appear in the four-body
system and possibly higher-body systems as well. For example, universal
four-body states have recently been predicted and observed in experiments.
These phenomena are often referred to as Efimov physics. We review their
theoretical description and discuss applications in different areas of physics
with a special emphasis on nuclear and particle physics.
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1. INTRODUCTION

The scattering of particles with sufficiently low kinetic energy is determined by the particles’ S-
wave scattering length a, assuming that their de Broglie wavelengths are large compared with the
range of the interaction. Generically, the scattering length a is comparable in magnitude to the
range � of the interaction: |a| ∼ �. In exceptional cases, the scattering length can be much larger
in magnitude than the range: |a| � �. Such a large scattering length requires the fine-tuning
of a parameter characterizing the interactions to the neighborhood of a critical value at which a
diverges to ± ∞. If the scattering length is large, the particles exhibit properties that depend on a
but are insensitive to the range and other details of the short-range interaction. These properties
are universal: They apply equally well to any nonrelativistic particle with short-range interactions
that produce a large scattering length (1, 2).

For example, in the case of equal-mass particles with mass m and a > 0, there is a two-body
bound state near the scattering threshold with binding energy Bd = �

2/(ma2). The corrections to
this formula are suppressed by powers of �/a . This bound state corresponds to a pole of the two-
particle scattering amplitude at E = −Bd . If the scattering length is negative, there is a universal
virtual state that corresponds to a pole on the unphysical second sheet in the complex energy plane.

The key evidence for universal behavior in the three-body system was the discovery of the
Efimov effect in 1970 (3). In the unitary limit 1/a → 0, the two-body bound state is exactly at the
two-body scattering threshold E = 0. Efimov showed that in this limit there are infinitely many
arbitrarily shallow three-body bound states whose binding energies B(n)

t have an accumulation
point at E = 0. The Efimov effect is only one aspect of universal properties in the three-body
system. It has universal properties not only in the unitary limit but whenever the scattering length
is large compared with the range �. The universal properties include a discrete scaling symmetry.
We refer to universal aspects associated with this discrete scaling symmetry as Efimov physics.

Although they are well established theoretically, Efimov states are difficult to precisely identify
in nature because (a) typical systems are not in the unitary limit and (b) the scattering length
cannot be varied. Perhaps the simplest example in nuclear physics is the triton. The triton can be
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interpreted as the ground state of an Efimov spectrum in the pnn system with total spin J = 1/2.
Because the ratio �/a is only approximately 1/3, the whole spectrum contains only one state, but
the low-energy properties of the triton can be described in this scenario. A promising system for
observing several Efimov states is 4He atoms, which have a scattering length that is more than
a factor of ten larger than the range of the interaction. Calculations that use accurate potential
models indicate that a system of three 4He atoms has two three-body bound states or trimers. The
ground-state trimer can be interpreted as an Efimov state, and it has been observed in experiments
involving the scattering of cold jets of 4He atoms from a diffraction grating (4). The excited trimer
is universally believed to be an Efimov state, but it has not yet been observed.

The rapid development of the field of cold atom physics has opened up new opportunities for
the experimental study of Efimov physics. These opportunities have been made possible by two
separate technological developments. One is the technology for cooling atoms to the extremely
low temperatures at which Efimov physics plays a crucial role. The other is the technology for
controlling the interactions between atoms. By tuning the magnetic field to a Feshbach resonance,
the scattering lengths of the atoms can be controlled experimentally and made arbitrarily large.
Both developments were crucial in recent experiments that provided the first indirect evidence
for the existence of Efimov states in ultracold atoms (5).

Overviews of Efimov physics in ultracold atomic gases can be found elsewhere (1, 2, 6). In
this review, we focus on universal aspects and Efimov states in nuclear and particle physics. Even
though the scattering length cannot be varied, there are many systems close to the unitary limit
at which Efimov physics is relevant. They include few-nucleon systems, halo nuclei, and weakly
bound hadronic molecules. These systems can be described in a universal effective field theory
(EFT) that implements an expansion around the unitary limit. Three-body bound states can be
interpreted as Efimov trimers.

In the next section, we review the physics of the Efimov effect, beginning with a brief account
of the history. In the following sections, we discuss applications in nuclear and particle physics.
We end with a summary and outlook.

2. PHYSICS OF THE EFIMOV EFFECT

2.1. History

The first hints on universal behavior in the three-body system came from the 1935 discovery of
the Thomas collapse (7), which is closely related to the Efimov effect. Thomas (7) studied the
zero-range limit for potentials with a single two-body bound state with fixed energy. Using a
variational argument, he showed that the binding energy B(0)

t of the deepest three-body bound
state diverges to infinity in this limit. Thus, the spectrum of three-body bound states is unbounded
from below.

Further progress was made through the application of the zero-range limit to the three-nucleon
system. An integral equation for S-wave neutron-deuteron scattering via zero-range interactions
was derived in 1957 by Skorniakov & Ter-Martirosian (8). For the spin-quartet channel, this
integral equation has no bound-state solutions and is well behaved. In the spin-doublet channel,
however, it has solutions for arbitrary energy (9), including bound-state solutions. If the solution is
fixed by requiring a specific three-body energy, the resulting equation still has a discrete spectrum
that extends to minus infinity (10, 11), in agreement with the earlier result of Thomas. Although
a prediction for the spin-doublet neutron-deuteron scattering length was obtained by use of the
triton binding energy as input (12), most subsequent work focused on finite-range forces that
avoid this pathology at high energies.
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In 1970, Efimov (3) realized that one should focus on the physics at low energies, E � �
2/(m�2),

and not on the deepest states. In this limit, where zero-range forces are adequate, he arrived at some
surprising results. He pointed out that when |a| is sufficiently large compared with the range � of
the potential, there is a sequence of three-body bound states whose binding energies are spaced
roughly geometrically in the interval between �

2/(m�2) and �
2/(ma2). As |a| is increased, new

bound states appear in the spectrum at critical values of a that differ by multiplicative factors
of eπ/s0 , where s0 depends on the statistics and the mass ratios of the particles. In the case of
spin-doublet neutron-deuteron scattering and for three identical bosons, s0 is the solution to the
transcendental equation

s0 cosh
π s0

2
= 8√

3
sinh

π s0

6
. 1.

Its numerical value is s0 ≈ 1.00624, so eπ/s0 ≈ 22.7. As |a|/� → ∞, the asymptotic number of
three-body bound states is

N → s0

π
ln

|a|
�

. 2.

In the limit a → ±∞, there are infinitely many three-body bound states with an accumulation
point at the three-body scattering threshold with a geometric spectrum

B(n)
t = (e−2π/s0 )n−n∗�2κ2

∗/m, 3.

where m is the mass of the particles and κ∗ is the binding wave number of the branch of Efimov
states labeled by n∗. The geometric spectrum in Equation 3 is the signature of a discrete scaling
symmetry with scaling factor eπ/s0 ≈ 22.7. It is independent of the mass or structure of the identical
particles and independent of the form of their short-range interactions. The Efimov effect can also
occur in other three-body systems if at least two of the three pairs have a large S-wave scattering
length, but the numerical value of the asymptotic ratio may differ from 22.7.

A formal proof of the Efimov effect was subsequently given by Amado & Noble (13, 14).
The Thomas and Efimov effects are closely related. The deepest three-body bound states found
by Thomas’s variational calculation can be identified with the deepest Efimov states (15). The
mathematical connection of the Efimov effect to a limit cycle was discussed in Reference 16.

The universal properties in the three-body system with large scattering length are not restricted
to the Efimov effect. The dependency of three-body observables on the scattering length or the
energy is characterized by scaling-behavior modulo coefficients that are log-periodic functions of
a (17, 18). This behavior is characteristic of a system with a discrete scaling symmetry.

In 1981, Efimov (19) proposed a new approach to the low-energy few-nucleon problem in
nuclear physics that, in modern language, was based on perturbation theory around the unitary
limit. Remarkably, this program works reasonably well in the three-nucleon system at momenta
that are small compared with Mπ . The Efimov effect requires that a boundary condition be imposed
on the wave function at short distances. The boundary condition can be fixed by means of either
the spin-doublet neutron-deuteron scattering length or the triton binding energy as input. If the
deuteron binding energy is used as the two-body input and if the boundary condition is fixed by
using the spin-doublet neutron-deuteron scattering length as input, the triton binding energy can
be predicted with an accuracy of 6%. The accuracy of the predictions can be further improved by
taking into account the effective range as a first-order perturbation (20). Thus, the triton can be
identified as an Efimov state associated with the deuteron and the spin-singlet virtual state as a pn
state with large scattering length (19).

In the three-nucleon system, this program was implemented within an EFT framework by
Bedaque et al. (21–23). The authors (23) found that the renormalization of the EFT requires
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a SU(4)-symmetric three-body interaction with an ultraviolet (UV) limit cycle. The three-body
force depends on a parameter �∗ that is determined through a renormalization condition that
plays the same role as Efimov’s boundary condition. SU(4) symmetry was introduced in 1937
by Wigner (24) as a generalization of the SU(2) × SU(2) spin-isospin symmetry, allowing for
a mixing of spin and isospin degrees of freedom in symmetry transformations. It is satisfied to
a high degree in the energy spectra of atomic nuclei. Exact Wigner symmetry requires the S-
wave scattering lengths in the spin-triplet and spin-singlet channels to be equal. However, if
both two-body scattering lengths are large, it is a very good approximation even if they are
different, because the symmetry-breaking terms are proportional to the inverse scattering lengths
(25).

This EFT is ideally suited to calculating corrections to the universal results in the scaling limit.
Its application to few-nucleon physics is discussed in Section 3.

2.2. Hyperspherical Methods

Coordinate-space methods are a valuable tool for the analysis of the three-body problem with
short-range interactions (17, 26, 27). In this subsection, we introduce the hyperspherical approach
that has been used to obtain important results about the Efimov spectrum. The material of this
subsection is based on the discussion of the hyperradial formalism in Reference 1. For three
particles of equal mass, the Jacobi coordinates are defined as

ri j = ri − r j and rk,i j = rk − 1
2

(ri + r j ), 4.

where the triple (ijk) is a cyclic permutation of the particle indices (28). The hyperradius R and
hyperangle αk are then defined by

R2 = 1
3

(r2
12 + r2

23 + r2
31) = 1

2
r2

i j + 2
3

r2
k,i j and αk = arctan

(√
3|ri j |

2|rk,i j |

)
, 5.

respectively. In the center-of-mass system, the Schrödinger equation in hyperspherical coordinates
is given by (

T R + Tαk + �2
k,i j

2mR2
+ V (R, �)

)
�(R, α,�) = E�(R, α, �), 6.

where

T R = �
2

2m
R−5/2

(
− ∂

∂ R2
+ 15

4R2

)
R5/2, 7.

Tα = �
2

2mR2

1
sin 2α

(
− ∂2

∂α2
− 4

)
sin 2α, 8.

and

�2
k,i j = L2

i j

sin2 αk
+ L2

k,i j

cos2 αk
, 9.

where � = (θi j , φi j , θk,i j , φk,i j ) and the Ls in Equation 9 are the usual angular-momentum operators
with respect to these angles.

We assume that the potential V depends only on the magnitude of the interparticle separation:

V (r1, r2, r3) = V (r12) + V (r23) + V (r31). 10.

www.annualreviews.org • Efimov States in Nuclear and Particle Physics 211

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
01

0.
60

:2
07

-2
36

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
C

E
R

N
 L

ib
ra

ry
 o

n 
06

/1
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



NS60CH09-Hammer ARI 15 September 2010 17:28

We now employ the usual Faddeev decomposition of ψ for three identical bosons and neglect
subsystem angular momentum:

�(R, α, �) = ψ(R, α1) + ψ(R, α2) + ψ(R, α3). 11.

The solution of the corresponding Faddeev equation can then be expanded in a set of eigenfunc-
tions of the hyperangular operator; specifically,

ψ(R, α) = 1
R5/2 sin(2α)

∑
n

fn(R)φn(R, α). 12.

This expansion leads to separate differential equations for the hyperangular functions φn and the
hyperradial functions fn. Particularly for the hyperradial functions, we obtain

E fn(R) =
[

�
2

2m

(
− ∂2

∂ R2
+ 15

4R2

)
+ V n(R)

]
fn(R)

+
∑

m

[
2Pnm(R)

∂

∂ R
+ Qnm(R)

]
fm(R), 13.

where the hyperradial potential Vn(R) is defined by

V n(R) = (λn(R) − 4)
�

2

2mR2
, 14.

and Pnm(R) and Qnm(R) are potentials that induce coupling between different hyperradial channels
(1).

For hyperradii R, which are much larger than the range � over which V is nonzero, the solution
of the equation for the hyperangular function φn for large α is

φ(high)
n (α) ≈ sin

[√
λn

(π

2
− α

)]
. 15.

However, for R � � and small α, the solution for the hyperangular part can be written as

φ(low)
n (α) = Aψ0(

√
2Rα) − 8α√

3
sin

(√
λn

π

6

)
, 16.

where A is a constant and ψ0 is the zero-energy solution to a two-body Schrödinger equation with
the two-body potential V,

ψk(r) = sin[kr + δ(k)]
k

= sin δ(k)
k

[cos(kr) + cot δ sin(kr)]. 17.

As k → 0, this expression yields ψ0(r) = r − a , and we can use this asymptotic two-body wave
function in Equation 16. This gives

φ(low)
n (α) = A(

√
2Rα − a) − 8α√

3
sin

(√
λn

π

6

)
. 18.

Because V = 0 in this region, this result must be consistent with Equation 15. This is achieved
by (a) choosing

A = −1
a

sin
[√

λn
π

2

]
, 19.

which ensures that φn(α) is continuous across the boundary between low and high solutions at
α ≈ �/R, and (b) the condition

cos
(√

λn
π

2

)
− 8√

3λn
sin

(√
λn

π

6

)
=

√
2
λn

sin
(√

λn
π

2

) R
a

20.
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on λn, which ensures that φn(α) has a continuous first derivative as α → �/R. We note that if these
equations are satisfied, then λn, and hence φn, is independent of R for R � |a|. Indeed, as long
as Equations 19 and 20 are satisfied, Equation 15 is the result for φ for all α, such that α > �/R.
Solving Equation 20 in the limit R � |a| we find the lowest eigenvalue

λ0 = −s 2
0

(
1 + 1.897

R
a

)
, 21.

where s0 = 1.00624 . . . . This is the only negative eigenvalue, and therefore only this channel
potential is attractive. If we now focus on the unitary limit, where |a| → ∞, we have λ0 = −s 2

0 .
Because it can also be shown that the coupling potentials Pnm and Qnm vanish in this regime, the
hyperradial equation (Equation 13) in the lowest channel becomes

�
2

2m

(
− ∂2

∂ R2
− s 2

0 + 1
4

R2

)
f0(R) = E f0(R). 22.

This equation holds for R � �. If we desire a solution for negative E, the requirement of normal-
izability for f0 mandates that

f (0)
0 (R) =

√
RKis0 (

√
2κ R), 23.

where the superscript (0) indicates that we are working in the unitary limit, and the subscript 0
refers to the solution for the hyperchannel corresponding to λ0, which is the only one that supports
bound states. The binding energy of these bound states is related to the κ of Equation 23 by

Bt ≡ �
2κ2

m
. 24.

Because the attractive 1/R2 potential produces a spectrum that is unbounded from below, some
other short-distance physics is needed to stabilize the system. If the two-body potential is known,
this short-distance physics is provided by the two-body potential V, which becomes operative for
R ∼ �. An alternative approach is to add an additional term to Equation 22 that summarizes the
impact of the two-body V. We take this potential to be a surface δ function at a radius 1/� (29),

V SR(R) = H 0(�)�2δ

(
R − 1

�

)
, 25.

where H0 is adjusted as a function of � such that the binding energy of a particular state, say B(n∗)
t

(with a corresponding κ∗, given by Equation 24), is reproduced. Note that because VSR is operative
only at small hyperradii R ∼ 1/�, it corresponds to a three-body force. (See Reference 30 for
a realization of this in a momentum-space formalism.) In physical terms, we anticipate � ∼ 1/�

because we know that once we consider hyperradii of order 1/�, the potential V begins to affect
the solutions.

Given that our focus is on predictions of the theory that are independent of details of V, we
can consider the extreme case and take the limit � → 0. In this limit, the form of Kis0 as R → 0
guarantees that, once H0 is fixed to give a bound state at B(n∗)

t , the other binding energies in this
hyperradial eigenchannel form a geometric spectrum. Specifically, B(n)

t = �
2κ2

n /m, where

κn = (
e−π/s0

)n−n∗
κ∗. 26.

Here n∗ is the index of the bound state corresponding to κ∗. Equation 26 holds for all κn, such
that κn � �. (Note that the subscript on κ now denotes the index of the bound state in adiabatic
channel zero.) The continuous scale invariance of the 1/R2 potential has been broken down to
a discrete scale invariance by the imposition of particular short-distance physics on the problem
through the short-distance potential of Equation 25 (29).
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The discrete scale invariance of the three-body wave function, which is exact in the limit of
infinite scattering length and zero range, also has implications for finite range. A perturbative
calculation of the effect of a finite effective range on the bound-state spectrum showed that the
spectrum remains unchanged (31) and that corrections to binding energies are of order (r0/a)2,
where r0 is the effective range of the interaction.

2.3. Efimov Spectrum
The hyperspherical methods discussed above can also be used to obtain the binding energy spec-
trum at finite scattering length. The short-distance boundary condition that was used to fix the
binding energy in the unitary limit also determines the bound-state spectrum at finite scattering
length. The binding momentum κ∗ introduced above can therefore be considered a convenient
parameter that determines the value of all universal few-body observables of the corresponding
universality class.

The exact discrete scaling symmetry observed in the limit of infinite scattering length also
exists if κ∗ is kept fixed and if a and other variables such as the energy are rescaled:

κ∗ → κ∗, a → Sm
0 a, E → S−2m

0 E. 27.

Observables such as binding energy and cross sections scale with integer powers of S0 = exp(π/s0)
under this symmetry. For example, the binding energy of an Efimov state (trimer), which is a
function of a and κ∗, scales as

B(n)
t (Sm

0 a, κ∗) = S−2m
0 B(n−m)

t (a, κ∗). 28.

This implies for positive scattering length that

B(n)
t (a, κ∗) = Fn[2s0 ln(aκ∗)]

�
2κ2

∗
m

. 29.

The function Fn parameterizes the scattering length dependency of all Efimov trimers exactly in
the limit of vanishing range. The function Fn satisfies

Fn(x + 2mπ ) = (e−2π/s0 )m Fn−m(x). 30.

The scattering length dependency of the bound-state spectrum is shown in Figure 1. We plot
the quantity K ≡ sgn(E)(m|E|)1/2/� against the inverse scattering length (note that the axes have
been rescaled such that the scaling factor is approximately 2.2 instead of 22.7). For bound states,
K corresponds to the binding momentum. Only a few of the infinitely many Efimov branches are
shown. A given physical system has a fixed scattering length value and is denoted by the vertical
dashed line. Changing the parameter κ∗ by a factor S0 corresponds to multiplying each branch of
trimers with this factor without changing their shapes. One important result is that three-body
bound states exist for positive and negative scattering lengths. This is remarkable for the latter
case because the two-body subsystem is unbound for a < 0. At a negative scattering length that
we denote with a ′

∗, a bound state with a given κ∗ has zero binding energy. As the scattering length
is increased, the binding energy increases until it crosses the atom-dimer threshold at the positive
scattering length a∗. The quantities a∗ and a ′

∗ can also be used to quantify a universality class of
Efimov states.

2.4. Universal Properties
Other calculable observables also display the discrete scaling symmetry discussed above for the
bound-state spectrum. The atom-dimer cross section fulfills, for example, the constraint
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T

T

K

AAA

AD

AAA

1/a

AD

Figure 1
The Efimov plot for the three-body problem. We show K ≡ sgn(E)(m|E|)1/2/� versus the inverse scattering
length. The allowed regions for three-atom scattering states and atom-dimer scattering states are labeled
AAA and AD, respectively. The blue lines labeled T are two of the infinitely many branches of Efimov states.
The gray shading indicates the threshold for scattering states. States along the vertical dashed line have a
fixed scattering length. Adapted from Reference 1 with permission.

σAD(S−2m
0 E;Sm

0 a, κ∗) = S2m
0 σAD(E; a, κ∗) 31.

under rescaling. At E = 0, the cross section is related to the atom-dimer scattering length σAD =
4π |aAD|2. This relationship implies that the atom-dimer scattering length can be written as

aAD = f [2s0 ln(aκ∗)]a, 32.

where f(x) is a periodic function with period 2π .
An observable that has been crucial for the experimental detection of Efimov physics in ultracold

atoms is the three-body recombination rate. In ultracold gases, atoms can undergo inelastic three-
body collisions in which a two-body bound state is formed. The dimer and remaining atom gain
kinetic energy in this process and can leave the atomic trap. Such processes lead to a measurable
loss of particles in the atomic trap. For negative scattering length, atoms can only recombine into
deep dimers that have binding energy of order �

2/(mR2). For positive scattering length, atoms
can recombine into (a) shallow dimers with binding energy �

2/(ma2) and (b) deep dimers. The
recombination rate that is a measure for the loss rate of atoms scales as �a4/m multiplied by a
log-periodic coefficient that is a function of a and κ∗. The recombination rate constant α can
therefore be written as

α(a) = g[2s0 ln(aκ∗)]
�a4

m
. 33.

The analytic form of the function g(x) is known and can be found in References 1 and 6. Here
we focus on the qualitative features of positive scattering length (Figure 2). At positive scattering
length, interference effects lead to log-periodically spaced minima in the recombination rate.
At negative scattering length, free atoms can only recombine into deep dimers. This process is
enhanced dramatically whenever an Efimov trimer is at threshold.
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Figure 2
The recombination rate constant α for positive scattering length a in units of �a4/m as a function of
1/a (in arbitrary units).

A different perspective on Efimov physics can be gained by keeping the two-body scattering
length fixed and varying the three-body parameter. As a result, all three-body observables are
correlated and lead to correlation lines when plotted against each other. One of these lines is the
Phillips line (32): the correlation that results when the trimer binding energy is plotted against the
atom-dimer scattering length. Such correlations have frequently been observed in nuclear physics,
in which different phase-shift equivalent potentials are employed in few-body calculations.

Because one three-body parameter is required for a description of the three-body system with
zero-range interactions, one must determine how many parameters are needed for calculations in
the n-body system. A first step toward answering this question was taken in Reference 33. The
authors of this work showed that the two-body scattering length and one three-body parameter are
sufficient to make predictions for four-body observables. Results in a more detailed analysis (34)
led to the conclusion that every trimer state is tied to two universal tetramer states with binding
energies related to the binding energy of the next-shallower trimer. In the unitary limit 1/a = 0,
the relation between the binding energies is

B(0)
4 ≈ 5Bt and B(1)

4 ≈ 1.01Bt, 34.

where B(0)
4 denotes the binding energy of the deeper of the two tetramer states and B(1)

4 denotes
the binding energy of the shallower of the two.

A recent calculation by von Stecher et al. (35) supports these findings and extends them to
higher numerical accuracy. For the relation between universal three- and four-body bound states
in the unitary limit, the authors found that

B(0)
4 ≈ 4.57 Bt and B(1)

4 ≈ 1.01 Bt, 35.

which is consistent with the results given in Equation 34 within the numerical accuracy.
The results obtained by Hammer & Platter (34) were presented in the form of an extended

Efimov plot (Figure 3). Four-body states must have a binding energy larger than that of the
deepest trimer state. An extended version of this four-body Efimov plot was also presented by
von Stecher et al. (35). The authors of this study calculated more states with higher numerical
accuracy and extended the calculation of the four-body states to the thresholds at which they
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Four-body ground state

Four-body excited state
Four-body ground state

Decay threshold: dimer + 2 particles
Decay threshold: 2 dimers

Four-body excited state

1/a

10–2

10–1

Decay threshold: trimer + particle

100

101

|E|
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scatteringscattering
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Infinite
scattering
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0.4 0.6 0.8 1.0

Figure 3
The extended Efimov plot for the four-body problem. Shown is the absolute value of energy E versus the
inverse scattering length. Both quantities are given in arbitrary units. The lower (upper) solid red line
denotes the four-body ground (excited) state. The dashed dark yellow line represents the threshold for decay
into a ground-state trimer and a particle. The lower (upper) blue dashed-dotted line represents the threshold
for decay into two dimers (a dimer and two particles). The vertical dashed line indicates the infinite
scattering length.

become unstable. From these results, they extracted the negative values of the scattering lengths
at which the binding energies of the tetramer states become zero and found that

a∗
4,0 ≈ 0.43a ′

∗ and a∗
4,1 ≈ 0.92a ′

∗. 36.

These numbers uniquely specify the relative position of three- and four-body recombination
resonances. This information was essential for Ferlaino et al.’s (36) subsequent observation of
these states in ultracold atoms.

Calculations for larger numbers of particles by means of a model that incorporates the universal
behavior of the three-body system were carried out by von Stecher (37). His findings indicate that
there is at least one n-body state tied to each Efimov trimer, and he also found numerical evidence
for a second excited five-body state.

2.5. Observation in Ultracold Atoms

The first experimental evidence for Efimov physics in ultracold atoms was presented by Kraemer
et al. (5) in 2006. This group used 133Cs atoms in the lowest hyperfine spin state. They observed
resonant enhancement of the loss of atoms from three-body recombination that can be attributed
to an Efimov trimer crossing the three-atom threshold. Kraemer et al. also observed a minimum
in the three-body recombination rate that can be interpreted as an interference effect associated
with Efimov physics. In a subsequent experiment with a mixture of 133Cs atoms and dimers, Knoop
et al. (38) observed a resonant enhancement in the loss of atoms and dimers. This loss feature
can be explained by an Efimov trimer crossing the atom-dimer threshold (39). The most exciting
recent developments in the field of Efimov physics involve universal tetramer states. Ferlaino et al.
(36) observed two tetramers in an ultracold gas of 133Cs atoms that confirm the results by Platter
et al. (33), Hammer & Platter (34), and von Stecher et al. (35).
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Recent experiments with other bosonic atoms have provided even stronger evidence of
Efimov physics in the three- and four-body sectors. Zaccanti et al. (40) measured the three-
body recombination rate and the atom-dimer loss rate in an ultracold gas of 39K atoms. They
observed two atom-dimer loss resonances and two minima in the three-body recombination rate
at large positive values of the scattering length. The positions of the loss features are consistent
with the universal predictions, with a discrete scaling factor of 22.7. Zaccanti et al. also observed
loss features at large negative scattering lengths. Barontini et al. (41) obtained the first evidence of
the Efimov effect in a heteronuclear mixture of 41K and 87Rb atoms. They observed three-atom
loss resonances at large negative scattering lengths in both the K-Rb-Rb and K-K-Rb channels,
for which the discrete scaling factors are 131 and 3.51 × 105, respectively. Gross et al. (42) mea-
sured the three-body recombination rate in an ultracold system of 7Li atoms. They observed a
three-atom loss resonance at a large negative scattering length and a three-body recombination
minimum at a large positive scattering length. The positions of the loss features, which are in the
same universal region on different sides of a Feshbach resonance, are consistent with the universal
predictions, with a discrete scaling factor of 22.7. Pollack et al. (43) measured the three-body
recombination in a system of 7Li atoms in a hyperfine state different from the system considered
by Gross et al. Pollack et al. (43) observed a total of 11 three- and four-body loss features. The
features obey the universal relations on each side of the Feshbach resonance separately; however,
a systematic deviation of 50% is found when features on different sides of the Feshbach resonance
are compared.

Efimov physics has also been observed in three-component systems of the 6Li atom. For the
three lowest hyperfine states of 6Li atoms, the three-pair scattering lengths approach a common
large negative value at large magnetic fields, and all three have nearby Feshbach resonances at
lower fields that can be used to vary the scattering lengths (44). The first experimental studies of
many-body systems of 6Li atoms in the three lowest hyperfine states have recently been carried
out by Ottenstein et al. (45) and by Huckans et al. (46). These groups’ measurements of the three-
body recombination rate revealed a narrow loss feature and a broad loss feature in a region of
low magnetic field. Theoretical calculations of the three-body recombination rate supported the
interpretation that the narrow loss feature arises from an Efimov trimer crossing the three-atom
threshold (47–49). Very recently, another narrow loss feature was discovered in a much higher
region of the magnetic field by Williams et al. (50) and by Jochim and coworkers (51). Williams et al.
used measurements of the three-body recombination rate in this region to determine the complex
three-body parameter that governs Efimov physics in this system. This parameter, together with
the three scattering lengths as functions of the magnetic field, determines the universal predictions
for 6Li atoms in this region of the magnetic field.

3. APPLICATIONS IN NUCLEAR PHYSICS

The properties of hadrons and nuclei are determined by quantum chromodynamics (QCD), a
nonabelian gauge theory formulated in terms of quark and gluon degrees of freedom. At low
energies, however, the appropriate degrees of freedom are the hadrons. Efimov physics and the
unitary limit can serve as a useful starting point for EFTs that describe hadrons and nuclei at very
low energies. For convenience, we work in natural units, where � = c = 1.

In nuclear physics, there are a number of EFTs, all of which are useful for a certain range
of systems (52–54). At very low energies, where Efimov physics plays a role, all interactions can
be considered short range, and even the pions can be integrated out. This so-called pionless
EFT is formulated in an expansion of the low-momentum scale Mlow over the high-momentum
scale Mhigh. It can be understood as an expansion around the limit of infinite scattering length
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or, equivalently, around near-threshold bound states. Its breakdown scale is set by a one-pion
exchange, M high ∼ M π , whereas M low ∼ 1/a ∼ k. For momenta k of the order of the pion
mass Mπ , pion exchange becomes a long-range interaction and has to be treated explicitly. Doing
so leads to the chiral EFT, whose breakdown scale Mhigh is set by the chiral symmetry–breaking
scale �χ . The pionless theory relies only on the large scattering length and is independent of
the short-distance mechanism generating it. This theory is therefore ideally suited to unraveling
universal phenomena driven by the large scattering length, such as limit-cycle physics (55, 56) and
the Efimov effect (3). In this section, we focus on the aspects of nuclear EFTs related to Efimov
physics. More complete overviews of the application of EFTs to nuclear phenomena in general
are available (52–54, 57).

3.1. Few-Nucleon Systems

In the two-nucleon system, the pionless theory reproduces the well-known effective range ex-
pansion in the large scattering length limit. The renormalized S-wave scattering amplitude to
next-to-leading order (NLO) in a given channel takes the form

T2(k) = 4π

m
1

−1/a − ik

[
1 − r0k2/2

−1/a − ik
+ . . .

]
, 37.

where k is the relative momentum of the nucleons and the dots indicate corrections of order
(M low/M high)2 for typical momenta k ∼ M low. In the language of the renormalization group,
Equation 37 corresponds to an expansion around the nontrivial fixed point for 1/a = 0 (58, 59).
The pionless EFT becomes very useful in the two-nucleon sector when external currents are
considered, and it has been applied to a variety of electroweak processes. These calculations are
reviewed in detail in References 52 and 53.

Here we focus on the three-nucleon system. It is convenient (but not mandatory) to write the
theory using so-called dimeron auxiliary fields (60). We need two dimeron fields, one for each
S-wave channel: (a) a field ti with spin (isospin) 1 (0) representing two nucleons interacting in the
3S1 channel (the deuteron) and (b) a field sa with spin (isospin) 0 (1) representing two nucleons
interacting in the 1S0 channel (23). Specifically,

L = N †

(
i∂t +

�∇2

2m

)
N − t†i

(
i∂t +

�∇2

4m
− �t

)
ti

− s †a

(
i∂t +

�∇2

4m
− �s

)
s a − gt

2

(
t†i N T τ2σiσ2 N + h.c.

)

− gs

2
(
s †a N T σ2τaτ2 N + h.c.

) − G3 N † [
g2

t (tiσi )†(tj σ j )

+ gt gs

3
(
(tiσi )†(s aτa ) + h.c.

) + g2
s (s aτa )†(s bτb )

]
N + . . . , 38.

where i and j are spin; a and b are isospin indices; and gt, gs, �t, �s, and G3 are the bare coupling
constants. The Pauli matrices σ i (τ a) operate in spin (isospin) space. This Lagrangian goes beyond
leading order (LO) and already includes the effective range terms. The coupling constants gt, �t,
gs, and �s, are matched to the scattering lengths aα and effective ranges r0α in the two channels
(α = s , t). Alternatively, one can match to the position of the bound-state/virtual-state pole γ α in
the T-matrix instead of the scattering length, which often improves convergence (61).

The term proportional to G3 constitutes a Wigner SU(4) symmetric three-body interaction. It
only contributes in the spin-doublet S-wave channel. When the auxiliary dimeron fields ti and sa

are integrated out, an equivalent form containing only nucleon fields is obtained. At LO, when the
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= +

+ +

Figure 4
The integral equation for the particle-dimeron scattering amplitude. The single (double) line indicates the
particle (dimeron) propagator. Adapted from Reference 1 with permission.

effective range corrections are neglected, the spatial and time derivatives acting on the dimeron
fields are omitted and the field is static. The coupling constants gα and �α , α = s , t are then not
independent, and only the combination g2

α/�α enters in observables. This combination can then
be matched to the scattering length or pole position.

The simplest three-body process to consider is neutron-deuteron scattering below the breakup
threshold. To focus on the main aspects of renormalization, we suppress all spin-isospin indices
and complications from coupled channels in the three-nucleon problem. The resulting system is
equivalent to a system of three spinless bosons with large scattering length. If the scattering length
is positive, the particles form a two-body bound state analog to the deuteron, which we generically
term a dimeron. The LO integral equation for particle-dimeron scattering is shown schematically
in Figure 4. Projected on total orbital angular momentum L = 0, it takes the form

T3(k, p ; E) = 16
3a

M (k, p ; E) + 4
π

∫ �

0
dq q 2 T3(k, q ; E)

× M (q , p ; E)

−1/a +
√

3q 2/4 − mE − iε
, 39.

where the inhomogeneous term reads

M (k, p ; E) = 1
2kp

ln
(

k2 + kp + p2 − mE
k2 − kp + p2 − mE

)
+ H (�)

�2
. 40.

Here H(�) is a running coupling constant that determines the strength of the three-body force
G3(�) = 2mH (�)/�2, and � is a UV cutoff introduced to regularize the integral equation. Note
that the three-body force is enhanced and enters at LO in this theory. The magnitude of the
incoming (outgoing) relative momenta is k ( p), and E = 3k2/(4m) − 1/(ma2). The on-shell point
corresponds to k = p , and the phase shift can be obtained via k cot δ = 1/T3(k, k; E) + ik. For
H ≡ 0 and � → ∞, Equation 39 reduces to the STM (Skorniakov–Ter-Martirosian) equation
(8). It is well known that the STM equation has no unique solution (9). The regularized STM
equation has a unique solution for any given (finite) value of the UV cutoff �, but the solution
strongly depends on the value of �. In the EFT framework, cutoff independence of the amplitude
is achieved by an appropriate “running” of H(�) (30, 62),

H (�) = cos[s0 ln(�/�∗) + arctan s0]
cos[s0 ln(�/�∗) − arctan s0]

, 41.
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Figure 5
The three-body coupling H as a function of the cutoff � for a fixed value of the three-body parameter �∗.
The solid red line shows the analytical expression from Equation 41, whereas the blue dots show results from
the numerical solution of Equation 39.

where �∗ is a dimensionful three-body parameter generated by dimensional transmutation. The
dependence of the three-body coupling H on the cutoff � is shown in Figure 5 for a fixed value of
the three-body parameter �∗. A good agreement between the methods of Equations 39 and 41 is
observed, indicating that the renormalization is well under control. Adjusting �∗ to a single three-
body observable allows us to determine all other low-energy properties of the three-body system.1

Because H(�) in Equation 41 vanishes for certain values of the cutoff �, it is possible to eliminate
the explicit three-body force from the equations by working with a fixed cutoff that encodes the
dependency on �∗. Doing so justifies tuning the cutoff � in the STM equation to reproduce
a three-body datum and using the same cutoff to calculate other observables, as suggested by
Kharchenko (63). Equivalently, a subtraction can be performed in the integral equation (64, 65).
In all cases, one three-body input parameter is needed for the calculation of observables.

The discrete scaling symmetry of the Efimov spectrum is manifest in the running of the coupling
H(�). The spectrum of three-body bound states of this EFT is exactly the Efimov spectrum. The
integral equations for the three-nucleon problem derived from the Lagrangian (Equation 38) are
a generalization of Equation 39. (For their explicit form and derivation, see, e.g., Reference 66.)

For S-wave nucleon-deuteron scattering in the spin-quartet channel, only the spin-1 dimeron
field contributes, and the integral equation becomes (8, 21, 22)

T (3/2)
3 (p, k; E) = −4γt

3
K (p, k) − 1

π

∫ ∞

0
dq q 2 Dt(q ; E)K (p, q )T (3/2)

3 (q , k; E), 42.

where

K (p, k) = 1
pk

ln
(

p2 + pk + k2 − mE
p2 − pk + k2 − mE

)
, 43.

Dt(q; E) is the full spin-1 dimeron propagator, and γt ≈ 45 MeV is the deuteron pole momentum.

1Note that the choice of the three-body parameter �∗ is not unique. For alternative definitions, see Reference 1.
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This integral equation has a unique solution for � → ∞, and there is no three-body force in the
first few orders. An S-wave three-body force is forbidden by the Pauli principle in this channel
because all nucleon spins must be aligned to obtain J = 3/2. The spin-quartet scattering phases
k cot δ(3/2) = 1/T (3/2)

3 (k, k; E) + ik can therefore be predicted to high precision from two-body
data alone.

In the spin-doublet channel, both dimeron fields as well as the three-body force in the La-
grangian (Equation 38) contribute (23). This contribution leads to a pair of coupled integral equa-
tions for the T-matrix. The renormalization of this equation is easily understood in the unitary
limit, which corresponds to a Wigner SU(4) symmetry of the theory (Equation 24). In the unitary
limit, these two integral equations decouple. One of the two equations has the same structure as the
equation for the bosonic problem (Equation 39), whereas the other one is similar to the equation in
the quartet channel (Equation 42). Thus, one needs a new parameter that is not determined in the
two-nucleon system in order to fix the (leading) low-energy behavior of the three-nucleon system
in this channel. This parameter corresponds to the SU(4) symmetric three-body force proportional
to G3 in the Lagrangian (Equation 38) (23). The three-body parameter gives a natural explana-
tion of universal correlations between different three-body observables such as the Phillips line, a
correlation between the triton binding energy and the spin-doublet neutron-deuteron scattering
length (32). These correlations are driven purely by the large scattering length, independent of
the mechanism responsible for it. If the spin-doublet neutron-deuteron scattering length is given,
the triton binding energy is predicted. In this scenario, the triton emerges as an Efimov state. This
scenario can be tested by using the effective theory to predict other three-body observables.

Higher-order corrections to the amplitude, including those due to two-nucleon effective range
terms, can be included perturbatively. This was first done at NLO for the scattering length and
triton binding energy (20) and for the energy dependency of the phase shifts (64). The authors
of References 66 and 67 demonstrated that it is convenient to iterate certain higher-order range
terms to extend the calculation to next-to-next-to-leading order (NNLO). Here a subleading
three-body force was also included, as required by dimensional analysis. More recently, Platter
& Phillips (68) showed, using the subtractive renormalization, that the leading three-body force
is sufficient to achieve cutoff independence up to NNLO in the expansion in Mlow/Mhigh. The
results for the spin-doublet neutron-deuteron scattering phase shift at LO (23), NLO (64), and
NNLO (69) are shown in Figure 6. There is excellent agreement with the available phase-
shift analysis and a calculation that uses a phenomenological nucleon-nucleon interaction. From
dimensional analysis, one would expect the subleading three-body force at NNLO. Whether there
is a suppression of the subleading three-body force or simply a correlation between the leading
and subleading contributions is not understood.

Three-nucleon channels with higher orbital angular momentum are similar to the spin quartet
for S-waves, and three-body forces do not appear until very high orders (70). A general counting
scheme for three-body forces based on the asymptotic behavior of the solutions of the LO STM
equation was proposed by Griesshammer (71). A complementary approach to the few-nucleon
problem is given by the renormalization group, in which the power counting is determined from
the scaling of operators under the renormalization group transformation (72). This method leads
to consistent results for the power counting (73–75).

Three-body calculations with external currents are still in their infancy. However, a few ex-
ploratory calculations have been carried out. Universal properties of the triton charge form factor
have been investigated (76), and neutron-deuteron radiative capture has been calculated (77–79).
The electromagnetic properties of the triton were also recently investigated (80, 81). This work
raises the possibility of carrying out accurate calculations of electroweak reactions at very low
energies for astrophysical processes.
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Figure 6
Phase shifts for neutron-deuteron scattering below the deuteron breakup at leading order ( purple dotted line),
next-to-leading order (red dashed line), and next-to-next-to-leading order (solid blue line). The dark yellow
squares and gray circles represent the results of a phase-shift analysis and a calculation that used AV18 and
the Urbana IX three-body force, respectively. The light blue triangle represents the experimental scattering
length. Adapted from Reference 69 with permission.

The pionless approach has also been extended to the four-body sector (33, 82). To be able
to apply the Yakubovsky equations, the authors used an equivalent effective quantum mechanics
formulation. The study of the cutoff dependency of the four-body binding energies revealed
that no four-body parameter is required for renormalization at LO. As a consequence, there are
universal correlations in the four-body sector that are also driven by the large scattering length.
The best-known example is the Tjon line: a correlation between the triton and α particle binding
energies, Bt and Bα , respectively. Of course, higher-order corrections break the exact correlation
and generate a band. In Figure 7, we show this band together with some calculations that make
use of phenomenological potentials (83) and a chiral EFT potential with explicit pions (84, 85).
All calculations with interactions that give a large scattering length must lie within the band.
Different short-distance physics and/or cutoff dependency should only move the results along the
band. This can be observed, for example, in the NLO results with the chiral potential indicated by
the squares in Figure 7 or in the few-body calculations with the low-momentum nucleon-nucleon
potential Vlow k (86). The Vlow k potential is obtained from phenomenological nucleon-nucleon
interactions by integrating out high-momentum modes above a cutoff � but leaving two-body
observables (such as the large scattering lengths) unchanged. The results of few-body calculations
with Vlow k are not independent of � but lie close to the Tjon line (cf. figure 2 of Reference 86).

Another interesting development is the application of the resonating group model to solve the
pionless EFT for three- and four-nucleon systems (87). This method allows for a straightforward
inclusion of Coulomb effects. Kirscher et al. (87) extended previous calculations in the four-
nucleon system to NLO and showed that the Tjon line correlation persists. Moreover, they
calculated the correlation between the singlet S-wave 3He-neutron scattering length and the
triton binding energy. Preliminary results for the halo nucleus 6He have been reported (88).

The pionless theory has also been applied within the no-core shell model framework. Here the
expansion in a truncated harmonic oscillator basis is used as the UV regulator of the EFT. The

www.annualreviews.org • Efimov States in Nuclear and Particle Physics 223

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
01

0.
60

:2
07

-2
36

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
C

E
R

N
 L

ib
ra

ry
 o

n 
06

/1
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



NS60CH09-Hammer ARI 15 September 2010 17:28

20

25

30

Phenomenological potentials
Next-to-leading order
Next-to-next-to-leading order
Experiment

35

7.5 8.0 8.5 9.0
Bt (MeV)

B α (M
eV

)

Figure 7
The Tjon line correlation as predicted by the pionless theory. The colored circles and triangles represent
various calculations that use phenomenological potentials (83). The dark blue squares represent the results of
a chiral effective field theory at next-to-leading order for different cutoffs, whereas the light blue diamond
represents the next-to-next-to-leading order result (84, 85). The red cross indicates the experimental point.
Adapted from Reference 82 with permission.

effective interaction is determined directly in the model space, where an exact diagonalization in
a complete many-body basis is performed. The authors of Reference 89 calculated the 0+ excited
state of 4He and the 6Li ground state using the deuteron, triton, and α particle ground states
as input. The first 0+ excited state in 4He was calculated within 10% of the experimental value,
whereas the 6Li ground state was approximately 70% of the experimental value, in agreement
with the 30% error expected for the LO approximation. These results are promising and should
be improved if range corrections are included. Finally, the spectrum of trapped three- and four-
fermion systems was calculated with the same method (90). In this case, the harmonic potential is
physical and not simply used as an UV regulator. For an update on this work, see Reference 91.

3.2. Quark Mass Dependence and Infrared Limit Cycle

In the following paragraphs, we discuss the possibility of an exact infrared limit cycle and the
Efimov effect in a deformed version of QCD with quark masses slightly larger than their physi-
cal values. The quark mass dependency of the chiral nucleon-nucleon interaction was calculated
to NLO in the chiral counting (92, 93). At this order, the quark mass dependency is synony-
mous with the pion mass dependency because of the Gell-Mann–Oakes–Renner relation: M 2

π =
−(mu + md )〈0|ūu|0〉/F 2

π , where 〈0|ūu|0〉 ≈ (−290 MeV)3 is the quark condensate. In this section,
we therefore use the term pion mass dependency instead of quark mass dependency, which is more
convenient for our purpose. The pion mass dependency of the nucleon-nucleon scattering lengths
in the 3S1–3D1 and 1S0 channels, as well as the deuteron binding energy, has been calculated 92–94.

In principle, the pion mass dependence of the chiral nucleon-nucleon potential is determined
uniquely. However, the extrapolation away from the physical pion mass generates errors. The
dominating sources are the constants C̄S,T and D̄S,T , which give the corrections to the LO contact
terms ∝ M 2

π and cannot be determined independently from fits to data at the physical pion mass.
A smaller effect is due to the error in the low-energy constant d̄16, which governs the pion mass

224 Hammer · Platter

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
01

0.
60

:2
07

-2
36

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
C

E
R

N
 L

ib
ra

ry
 o

n 
06

/1
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



NS60CH09-Hammer ARI 15 September 2010 17:28

dependence of gA. Both effects generate increasing uncertainties as one extrapolates away from
the physical point.

In the calculation given in Reference 93, the size of the two constants D̄S and D̄T was con-
strained from naturalness arguments, assuming that −3 ≤ F 2

π �2
χ D̄S,T ≤ 3, where �χ � 1 GeV

is the chiral symmetry–breaking scale. These bounds are in agreement with resonance satura-
tion estimates (95). The constant d̄16 was varied in the range d̄16 = −0.91 . . . −1.76 GeV−2 (96).
This range was used to estimate the extrapolation errors of two-nucleon observables such as the
deuteron binding energy and the spin-singlet and spin-triplet scattering lengths (93). In the chiral
limit, the deuteron binding energy was found to be of natural size: Bd ∼ F 2

π /m � 10 MeV. Note,
however, that if larger uncertainties in the low-energy constants D̄S and D̄T are assumed, one
cannot make a definite statement about the binding of the deuteron in the chiral limit (92, 94).
For pion masses above the physical value, however, all calculations show similar behavior.

In Figure 8, we show the inverse scattering lengths in the spin-triplet and spin-singlet channels
from Reference 93, together with some recent lattice results from Reference 99. Figure 8 also
shows that a scenario in which both inverse scattering lengths vanish simultaneously at a critical
pion mass of approximately 200 MeV is possible. For pion masses below the critical value, the
spin-triplet scattering length is positive and the deuteron is bound. As the inverse spin-triplet
scattering length decreases, the deuteron becomes more and more shallow and finally becomes
unbound at the critical mass. Above the critical pion mass, the deuteron exists as a shallow virtual
state. In the spin-singlet channel, the situation is reversed: The spin-singlet deuteron is a virtual
state below the critical pion mass and becomes bound above. On the basis of this behavior, Braaten
& Hammer (56) conjectured that one should be able to reach the critical point by varying the
up and down quark masses mu and md independently because the spin-triplet and spin-singlet
channels have different isospin. In this case, the triton would display the Efimov effect, which
corresponds to the occurrence of an infrared limit cycle in QCD. A complete investigation of

0 200 400 600
Mπ (MeV)

0 200 400 600
–3

–2

–1

0

1

2

3

a b

(a1S0 )–1 (fm–1) (a3S1)–1 (fm–1)

Lattice
calculations

Lattice
calculations

Figure 8
Inverse of the S-wave scattering lengths in the (a) spin-singlet and (b) spin-triplet nucleon-nucleon channels
as a function of the pion mass Mπ . The blue triangles represent the lattice calculations from References 97
and 98; the purple squares represent those from Reference 99. Adapted from Reference 54 with permission.
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Figure 9
Binding energies Bt of the triton ground state and first two excited states as a function of Mπ . The circles,
squares, and diamonds represent the chiral effective field theory result, and the solid red lines represent
calculations in the pionless theory. The vertical gray dotted line indicates the critical pion mass M crit

π , and
the dashed blue lines are the neutron-deuteron (M π ≤ M crit

π ) and neutron–spin singlet–deuteron
(M π ≥ M crit

π ) bound-state thresholds. Adapted from Reference 101 with permission.

this issue requires the inclusion of isospin-breaking corrections and therefore higher orders in
the chiral EFT. However, the universal properties of the limit cycle have been investigated by
considering specific values of D̄S and D̄T that lie within the naturalness bound and that cause the
spin-singlet and spin-triplet scattering lengths to become infinite at the same value of the pion
mass.

The properties of the triton around the critical pion mass have been studied for one particular
solution with a pion mass, M crit

π , of197.8577 MeV (100). From the solution of the Faddeev equa-
tions, the binding energies of the triton and the first two excited states in the vicinity of the limit
cycle were calculated for this scenario in chiral EFT. The binding energies are given in Figure 9.
The neutron-deuteron (M π ≤ M crit

π ) and neutron–spin singlet–deuteron (M π ≥ M crit
π ) thresh-

olds are also shown. Directly at the critical mass, these thresholds coincide with the three-body
threshold, and the triton has infinitely many excited states. Figure 9 also shows the LO calcula-
tions in the pionless theory that use the pion mass dependence of the nucleon-nucleon scattering
lengths and one triton state from chiral EFT as input. The chiral EFT results for the other triton
states in the critical region are reproduced very well. The binding energy of the triton ground
state varies only weakly over the whole range of pion masses and is approximately one-half of the
physical value at the critical point. The excited states are strongly influenced by the thresholds
and vary much more strongly.

These studies have been extended to NNLO in the pionless EFT and neutron-deuteron scat-
tering observables (101). The higher-order corrections in the vicinity of the critical pion mass are
small. This is illustrated in Figure 10.

A final answer to the question of whether an infrared limit cycle can be realized in QCD can
be obtained only by solving QCD directly. Determining whether this solution can be achieved
by appropriately tuning the quark masses in a lattice QCD simulation (102) would be particularly
interesting. The first full lattice QCD calculation of nucleon-nucleon scattering has been reported
(99), but statistical noise presented a serious challenge. A promising recent high-statistics study of
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Figure 10
Doublet neutron-deuteron scattering length a1/2

nd in the critical region computed in the pionless effective field
theory. The solid red line represents the leading-order result, and the light blue crosses and dark blue circles
represent the next-to-leading order and next-to-next-to-leading order results, respectively. The vertical
green dotted lines indicate the pion masses at which a1/2

nd diverges because the second and third excited states
of the triton appear at the neutron-deuteron threshold. These singularities in a1/2

nd (M π ) are a clear signature
that the limit cycle is approached in the critical region. Adapted from Reference 101 with permission.

three-baryon systems also presented initial results for a system with the quantum numbers of the
triton, such that lattice QCD calculations of three-nucleon systems are now within sight (103).
For a review of these activities, see Reference 104.

Such calculations require a detailed understanding of the modification of the Efimov spectrum
in a cubic box. For identical bosons, there are significant finite volume shifts even for moderate
box sizes (105). These shifts show universal scaling behavior that could be exploited to reduce the
computational effort (106). The extension of these studies to the triton case is in progress.

3.3. Halo Nuclei

A special class of nuclear systems exhibiting universal behavior consists of halo nuclei (27, 107).
A halo nucleus comprises a tightly bound core surrounded by one or more loosely bound valence
nucleons. The valence nucleons are characterized by a very low separation energy compared with
those in the core. As a consequence, the radius of the halo nucleus is large compared with the
radius of the core. A trivial example is the deuteron, which can be considered a two-body halo
nucleus. The root mean square radius of the deuteron is approximately three times larger than that
of the constituent nucleons. Halo nuclei with two valence nucleons are particularly interesting
examples of three-body systems. If none of the two-body subsystems is bound, the halo nuclei are
termed Borromean halo nuclei. (This name is derived from the heraldic symbol of the Borromeo
family of Italy, which consists of three rings interlocked in such a way that if any one of the rings
is removed, the other two separate.) The most carefully studied Borromean halo nuclei are 6He
and 11Li, which have two weakly bound valence neutrons (107). In the case of 6He, the core is a
4He nucleus, which is also known as the α particle. The two-neutron separation energy for 6He
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is ∼1 MeV, which is small compared with the ∼28-MeV binding energy of the α particle. The
nα system has no bound states, and the 6He nucleus is therefore Borromean. There is, however,
a strong P-wave resonance in the J = 3/2 channel of nα scattering, which is sometimes referred
to as 5He. This resonance is responsible for the binding of 6He. Thus, 6He can be interpreted as
a bound state of an α particle and two neutrons, both of which are in P3/2 configurations.

Because of the separation of scales in halo nuclei, they can be described by extensions of the
pionless EFT. One can assume the core to be structureless and treat the nucleus as a few-body
system of the core and the valence nucleons. Corrections from the structure of the core appear
in higher orders and can be included in perturbation theory. Cluster models of halo nuclei then
appear as LO approximations in this halo EFT. A new feature is the appearance of resonances
as in the nα system, which leads to a more complicated singularity structure and renormalization
compared with the few-nucleon system discussed above (108).

The first application of EFT methods to halo nuclei was carried out in References 108 and
109, in which the nα system (5He) was considered. The authors found that for resonant P-wave
interactions, both the scattering length and effective range have to be included nonperturbatively
at LO. At threshold, however, only one combination of coupling constants is fine-tuned, and the
EFT becomes perturbative. Because the nα interaction is resonant in the P-wave and not in the
S-wave, the binding mechanism of 6He is not the Efimov effect. However, this nucleus can serve
as a laboratory in which to study the interplay of resonance structures in higher partial waves.

Three-body halo nuclei composed of a core and two valence neutrons are of particular interest
due to these systems’ potential to display the Efimov effect (3). Because the scattering length
cannot be easily varied in halo nuclei, one looks for Efimov scaling between different states of
the same nucleus. Such analyses assume that the halo ground state is an Efimov state.2 They
have previously been carried out in cluster models and the renormalized zero-range model (e.g.,
110–112). A comprehensive study of S-wave halo nuclei in halo EFT was recently carried out
(113). This work provided binding energy and structure calculations, including error estimates,
for various halo nuclei. In a confirmation of earlier results by Fedorov et al. (110) and Amorim
et al. (111), 20C was found to be the only candidate nucleus for an excited Efimov state, assuming
the ground state is also an Efimov state. This nucleus consists of a 18C core with spin and parity
quantum numbers JP = 0+ and two valence neutrons. The nucleus 19C is expected to have a 1

2
+

state near threshold, implying a shallow neutron-core bound state and therefore a large neutron-
core scattering length. The value of the 19C energy, however, is not known well enough to make a
definite statement about the appearance of an excited state in 20C. An excited state with a binding
energy of ∼65 keV is marginally consistent with the current experimental information.

The matter form factors and radii of halo nuclei can also be calculated in the halo EFT (113,
114). As an example, we show the various one- and two-body matter density form factors Fc , Fn,
Fnc , and Fnn with LO error bands for the ground state of 20C as a function of the momentum
transfer k2 (from Reference 113) in Figure 11. The theory breaks down for momentum transfers
on the order of the pion mass squared (k2 ≈ 0.5 fm−2).

From the slope of the matter form factors, one can extract the corresponding radii:

F (k2) = 1 − 1
6

k2〈r2〉 + . . . . 44.

Information about these radii has been extracted from experiments for some halo nuclei based on
intensity interferometry and Dalitz plots (115). Within the error estimates, the extracted values

2It is also possible that only the excited state is an Efimov state and that the ground state is more compact. This scenario
cannot be ruled out, but it is also less predictive.
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Figure 11
The one- and two-body matter density form factors Fc , Fn , Fnc , and Fnn with leading-order error bands
( gray areas) for the ground state of 20C as a function of the momentum transfer k2.

are in good agreement with the theoretical predictions from halo EFT (113). For the possible
20C excited state, the halo EFT at LO predicts neutron-neutron and neutron-core radii of order
40 fm, whereas the ground-state radii are of order 2–3 fm. The theoretical errors are estimated
to be of order 10%. Assuming a natural value for the effective range of the n-18C interaction,
r0 ≈ 1/M π , NLO predictions for these radii have recently been obtained (116). The LO results
were found to be stable under inclusion of the leading effective range corrections, and the typical
errors could be reduced to approximately 1–2%.

Scattering observables offer a complementary window into Efimov physics in halo nuclei, and
recent model studies have focused on this issue. Specifically, the trajectory of the possible 20C
excited state was extended into the scattering region to find a resonance in n-19C scattering (117,
118). A detailed study of n-19C scattering near an Efimov state was also carried out (119).

The simplest strange halo nucleus is the hypertriton, a three-body bound state composed of
a proton, a neutron, and the �. The total binding energy is only approximately 2.4 MeV. The
separation energy for the �, E� = 0.13 MeV, is tiny compared with the binding energy of the
deuteron, Bd = 2.22 MeV. The hypertriton can therefore also be considered a two-body halo
nucleus. It has been studied in both two-body and three-body approaches (120–122). A study of
the hypertriton in the halo EFT has been performed (123). The �N scattering lengths are not
well known experimentally because the few scattering data are at relatively high energies. If the
�N scattering lengths are large, the hypertriton is probably bound due to the Efimov effect. In this
case, there would also be a correlation between the �d scattering length a�d and the hypertriton
binding energy B�

t analog to the Phillips line in the neutron-deuteron system (121). In Figure 12,
we show this Phillips line correlation for three values of the �N pole position γ i (123). For small
hypertriton energies B�

t , the different Phillips lines coincide exactly (the physical hypertriton
corresponds to M B�

t ≈ 1.06 γ 2
t ) and deviate from each other only at very large binding energies,

at which the EFT breaks down. For all practical purposes, the Phillips line is therefore independent
of γ i. Whether the Efimov effect plays a role for the hypertriton is an open question. Most modern
hyperon-nucleon potentials, however, favor a natural �N scattering length (54).

Another powerful method that can be used to investigate the Efimov effect in three-body halo
nuclei at existing and future facilities with exotic beams (such as FAIR and FRIB) is Coulomb
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Figure 12
Phillips line in the hypertriton channel for different values of the �N pole position γ i (all quantities are in
units of the deuteron pole position γt ≈ 45 MeV). Adapted from Reference 123 with permission.

excitation. In such experiments, a nuclear beam scatters off the Coulomb field of a heavy nucleus.
Such processes can populate excited states of the projectile that subsequently decay, leading to
its so-called Coulomb dissociation (124). The halo EFT offers a systematic framework for a full
quantum-mechanical treatment and can be used to predict the signature of the Efimov effect in
these reactions.

3.4. Three-Alpha System and Coulomb Interaction

The excited 0+ state in 12C is known as the Hoyle state. Its properties are important for stellar
astrophysics because it determines the ratio of carbon to oxygen in stellar helium burning. Efimov
suggested (3, 17) that the Hoyle state could be explained as a universal trimer of α particles. (For a
more detailed discussion, see Reference 28.) In this case, the universal properties are modified by
the long-range Coulomb interaction. The modified Efimov spectrum must be understood before
any definite statement about the nature of the Hoyle state can be made.

Many recent studies have focused on the consistent inclusion of the Coulomb interaction in
two-body halo nuclei such as the pα and αα systems (125, 126). Specifically, the αα system shows
a surprising amount of fine-tuning between the strong and electromagnetic interactions. It can
be understood in an expansion around the limit where, when the electromagnetic interactions are
turned off, the 8Be ground state is exactly at threshold and exhibits conformal invariance (126). In
this scenario, the Hoyle state in 12C would indeed appear as a remnant of an excited Efimov state.
To better understand the modification of the Efimov spectrum and limit cycles by long-range in-
teractions such as the Coulomb interaction, Hammer & Higa (127) investigated a one-dimensional
inverse square potential supplemented with a Coulomb interaction. The results indicate that the
counterterm required to renormalize the inverse square potential alone is sufficient to renormalize
the full problem. However, the breaking of the discrete scale invariance through the Coulomb
interaction leads to a modified bound-state spectrum. The shallow bound states are strongly in-
fluenced by the Coulomb interaction, whereas the deep bound states are dominated by the inverse
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square potential. These results support the conjecture that the Hoyle state is an Efimov state of α

particles, but a full calculation of the 3α system—including Coulomb in the halo EFT—is missing.
Calculations with the fermionic molecular dynamics model and electron scattering data, however,
support a pronounced α cluster structure of the Hoyle state (128).

4. APPLICATIONS IN PARTICLE PHYSICS

4.1. Hadronic Molecules

In recent years, many new and possibly exotic charmonium states have been observed at the B
factories at SLAC, at KEK in Japan, and at the CESR collider at Cornell. These observations
have revived the field of charmonium spectroscopy (129–131). Several of the new states exist very
close to scattering thresholds and can be interpreted as hadronic molecules. If they are sufficiently
shallow, one may ask whether there are any three-body hadronic molecules bound by the Efimov
effect.

A particularly interesting example is the X(3872), discovered by the Belle Collaboration (132)
in B± → K ±π+π−J/ψ decays and quickly confirmed by CDF (133), DØ (134), and BaBar (135).
The state has likely quantum numbers JPC = 1++ and is very close to the D∗0 D̄0 threshold. As
a consequence, the X(3872) has a resonant S-wave coupling to the D∗0 D̄0 system. An extensive
program provides predictions for its decay modes based on the assumption that it is a D∗0 D̄0

molecule with even C-parity:

(D∗0 D̄0)+ ≡ 1√
2

(
D∗0 D̄0 + D0 D̄∗0) . 45.

This assumption naturally explains several puzzling features, such as the apparently different mass
in the J/ψπ+π− and D∗0 D̄0 decay channels and the isospin-violating decays (136, 137). A status
report with references to the original literature can be found in Reference 138.

Use of the latest measurements in the J/ψπ+π− channel show the mass of the X(3872) (139) to
be mX = (3,871.55±0.20) MeV, which corresponds to an energy relative to the D∗0 D̄0 threshold
of

EX = (−0.26 ± 0.41) MeV. 46.

The central value corresponds to a (D∗0 D̄0)+ bound state with binding energy BX = 0.26 MeV
[but a virtual state cannot be excluded from the current data in the J/ψπ+π− and D∗0 D̄0 channels
(140–142)]. The X(3872) is also very narrow; its width is smaller than 2.3 MeV.

Because the X(3872) is so close to the D∗0 D̄0 threshold, it has universal low-energy properties
that depend only on its binding energy (143). Close to threshold, the coupling to charged D
mesons can be neglected because the D∗+ D̄− threshold is ∼8 MeV higher in energy. Therefore,
the properties of the X(3872) can be described in a universal EFT with contact interactions only.
Unfortunately, there is no Efimov effect in this system (143), so universal bound states of the X
and D0 or D∗0 mesons do not exist. The reason for this is that there are insufficient pairs with
resonant interactions, as only the D∗0 D̄0 and D0 D̄∗0 interactions are resonant. However, it is
possible to provide model-independent predictions for the scattering of D0 and D∗0 mesons and
their antiparticles off the X(3872). This scattering process is determined to LO by the D∗0 D̄0 and
D0 D̄∗0 interactions only.

The corresponding cross sections as a function of the center-of-mass momentum k (139) are
shown in Figure 13. The difference between the contribution of S-waves (L = 0) and the full
cross section (including all partial waves up to L = 6) is negligible for momenta below the bound-
state pole momentum γ . Our results are given in units of the scattering length and may be scaled
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Figure 13
Total cross section for scattering of D0 and D

∗0 mesons off the X(3872) for S-waves (L = 0) and including
higher partial waves with L < 7, in units of the scattering length a. The cross section is the same for the
scattering of particles as it is for the scattering of antiparticles. Adapted from Reference 139 with permission.

to physical units once a is determined. At present, the error in the experimental value for EX

in Equation 43 implies a large error in the scattering length. Specifically, we obtain the range
γ = (0 . . . 36) MeV for the pole momentum and the range a = (5.5 . . . ∞) fm for the scattering
length with central values γ = 22 MeV and a = 8.8 fm. Using the central value of the scattering
length, we obtain for the scale factor a2 = 0.78 b. This factor can become infinite if the X(3872)
is directly at threshold, whereas the lower bound from the error in EX would give a value of
0.3 b. Even in this case, the total cross section at threshold would be of the order of 300 b for D0X
scattering and 1,000 b for D0∗X scattering. It may be possible to extract the scattering within the
final-state interactions of Bc decays and/or other LHC events. Observation of enhanced final-state
interactions would provide an independent confirmation of the nature of the X(3872).

There may also be hadronic three-body molecules that are bound due to the Efimov effect,
but currently no strong candidate states are known. This situation will be improved by new
experiments at facilities such as FAIR and Belle II, which have a dedicated program to study exotic
charmonium states.

5. SUMMARY AND OUTLOOK

Any few-body system with short-range interactions that has a two-body scattering length larger
than the range of the underlying interaction displays universal properties and Efimov physics.
This statement is independent of the typical length scale of the system, and atomic, nuclear, and
particle physics can provide examples of universality. Although much progress has recently been
made in experiments with ultracold atoms, the concept of Efimov physics was originally devised
for the few-nucleon problem. As we have shown, it can serve as a starting point for a description
of very low energy nuclear phenomena in an expansion around the unitary limit.

In this review, we have discussed the manifestation of Efimov physics with a strong emphasis
on nuclear and particle physics. There are a number of such systems that display low-energy uni-
versality associated with Efimov physics. The most important example from nuclear physics is the
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triton. The nucleon-nucleon scattering length is large compared with the range of the internuclear
interaction. Phase shift–equivalent nucleon-nucleon potentials therefore necessarily give results
for the triton binding energy and neutron-deuteron scattering length that are correlated and lie
on the Phillips line. The implications of universality on the four-nucleon system have also been
explored. The Tjon line, a correlation between three-nucleon and four-nucleon binding energies,
is a result of the large two-nucleon scattering length.

Halo nuclei could provide a further example of few-body universality. Specifically, two-neutron
halos such as 20C could display Efimov physics in the form of an excited three-body state due to
the large core-neutron scattering length. Although initial studies of bound-state observables have
become available, scattering calculations represent an exciting opportunity for future applications
of the EFT approach. So-called p − t reactions, in which a triton is formed in a collision of a
proton and a two-neutron halo, will provide an important benchmark.

Several new charmonium states have recently been discovered close to scattering thresholds
and can be interpreted as hadronic molecules. If they are sufficiently shallow, they have universal
properties associated with large scattering length physics. The best-known example is the X(3872),
which may be interpreted as a D∗0 D̄0 molecule with even C-parity. There may also be three-body
hadronic molecules bound by the Efimov effect, but currently no strong candidates are known.

The separation of scales between scattering length and range facilitates the application of an
EFT that reproduces at LO the results obtained by Efimov and is known as pionless EFT. Within
this framework, corrections to the zero-range limit can be calculated systematically in a small
parameter expansion in powers of k� and �/a . The number of few-body calculations that include
higher-order corrections is growing. As a consequence, the expansion around the unitary limit
provides a useful starting point for a controlled description of very low energy phenomena in
nuclear and particle physics. The intricate consequences of Efimov physics are explicit in this
framework, and universal correlations between observables arise naturally. Moreover, this theory
is an ideal tool with which to unravel universal properties and establish connections between
different fields of physics.

The constituents of nuclear few-body systems can have charge, unlike the neutral atoms used
in experiments with ultracold gases. Electroweak observables thus provide additional information
about few-body universality. However, they are also of interest by themselves, and pionless EFT
guarantees a consistent framework for the calculation of observables with the minimal number
of parameters because it is straightforward to consider external currents in any EFT. The first
calculations for observables such as form factors and capture rates have been performed, but many
more remain to be calculated. Of very great interest in this context are thermal capture rates in
the four-nucleon sector that are relevant to big bang nucleosynthesis.
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