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QED is not endangered by the proton’s size
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Pohl et al. have reported a very precise measurement of the Lamb-shift in muonic hydrogen (Pohl et al.,
2010) [1], from which they infer the radius characterizing the proton’s charge distribution. The result
is 5 standard deviations away from the one of the CODATA compilation of physical constants. This has
been interpreted (Pohl et al., 2010) [1] as possibly requiring a 4.9 standard-deviation modification of
the Rydberg constant, to a new value that would be precise to 3.3 parts in 1013, as well as putative
evidence for physics beyond the standard model (Flowers, 2010) [2]. I demonstrate that these options are
unsubstantiated.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The issue is extremely simple. The discrepancy quoted in the
abstract is between results which do not depend on a specific
model of the proton’s form factor and results, by Pohl et al., which
do [3]. The conclusion is not that the experiments or the theory
are wrong, but that the model (the customary dipole form factor)
is inadequate at the level of precision demanded by the data. The
experiments and QED are right, the dipole is wrong. More gener-
ally, it is risky to use a model of the charge distribution to extract
a property of the very same charge distribution.

The conclusion of the previous paragraph is the expected one.
The dipole form factor is but a rough description of higher-energy
data and is unacceptable on grounds of the analyticity require-
ments stemming from causality and the locality of fundamental
interactions.

Moreover, any simple one-parameter description of the proton’s
non-relativistic Sacks form factor, G E (−q2) in terms of only one
mass parameter is inaccurate: the proton is not so simple. More
precisely, the proton’s relativistic form factor, G E (q2), is expected,
in the timelike domain q2 � 0, to have a complex structure, with
a first cut starting at q2 = 4m2

π and a plethora of branch cuts and
complex resonant poles thereafter [4].

The same is true of the charge distribution, ρp(r), the Fourier
transform of G E (−q2). Even most naively, ρp(r) is expected to
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have a “core” and a “pion cloud” [5], corresponding to a minimum
of two length parameters.

2. In detail

Let � denote an electron or a μ− . The leading proton-size cor-
rection to the energy levels of an �p atom is

�E = 2α4

3n3
m3

r δl0
〈
r2

p

〉
,

mr ≡ m�mp

m� + mp
(1)

where 〈r2
p〉 is the mean square radius of ρp(r).

The charge distribution is related to the non-relativistic limit of
the electric form-factor, G E , by the Fourier transformation

G E
(−q2) =

∫
d3r ρp(r)e−i�q�r . (2)

Precise measurements of 〈r2
p〉 have two origins. One is mainly

based on the theory [6] and observations [7] of hydrogen. The re-
sult, compiled in CODATA [8], is

〈
r2

p

〉
(CODATA) = (0.8768 ± 0.0069 f)2. (3)

The second type of measurement is based on the theory and ob-
servations [9,10] of very low-energy electron–proton scattering. It
yields

〈
r2

p

〉
(ep) = (0.895 ± 0.018 f)2. (4)
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This result requires a sophisticated data analysis, partly based on a
continued-fraction expansion of G E [9].

The two quoted methods of measuring 〈r2
p〉 are model-indepen-

dent, in the sense of not assuming a particular form of the proton’s
charge distribution, ρp(r).

The plot thickens as one considers the Lamb shift 2P F=2
3/2 →

2S F=1
1/2 in the μp atom, measured [1] to be

Lexp = 206.2949 ± 0.0032 meV. (5)

In meV units for energy and fermi units for the radii, the predicted
value [11] is of the form

Lth[〈
r2

p

〉
,
〈
r3

p

〉
(2)

]
= 209.9779(49) − 5.2262

〈
r2

p

〉 + 0.00913
〈
r3

p

〉
(2)

. (6)

The first two coefficients are best estimates of many contributions
while the third stems from the n = 2 value of an addend [12,6]

�E3(n) = α5

3n3
m4

r δl0
〈
r3

p

〉
(2)

, (7)

proportional to the third Zemach moment

〈
r3

p

〉
(2)

≡
∫

d3r1 d3r2 ρ(r1)ρ(r2)|r1 − r2|3. (8)

For a single-parameter description of the charge distribution,
there is an explicit relation between 〈r3

p〉(2) and 〈r2
p〉. Consider, as

an example, a ρ-dominated form factor in its narrow-width non-
relativistic limit

G E
(
q2) = m2

ρ

q2 − m2
ρ + imρΓρ

→ m2
ρ

q2 + m2
ρ

. (9)

The corresponding charge distribution is a Yukawian

ρ(r) = m2
ρ

4πr
e−mρr . (10)

Its relevant moments are 〈r0〉 = 1,〈
r2〉 = 6/m2

ρ,
〈
r3〉 = 24/m3

ρ,
〈
r3〉

(2)
= 60/m3

ρ. (11)

The model-dependent relation is thus

[〈
r3〉

(2)

]2 = 50

3

[〈
r2〉]3

. (12)

For a dipole form factor

G E
(−q2) = m4

d

(q2 + m2
d)2

(13)

the charge distribution is an exponential

ρ(r) = m3
d

8π
e−mdr (14)

for which 〈r0〉 = 1,〈
r2〉 = 12/m2

d,
〈
r3〉 = 60/m3

d,
〈
r3〉

(2)
= 315/

(
2m3

d

)
. (15)

The model-dependent relation is thus

[〈
r3〉

(2)

]2 = 3675

64

[〈
r2〉]3

. (16)

The ratio of the numbers in Eqs. (12), (16) is 128/441 ∼ 0.29,
showing the difference of relevant moments between to two form-
factor “models”. Even if we took the sixth root of this number to
bring it closer to unity – as experimentalists do with 〈r2〉 to halve
the relative error – the result would, at the required great preci-
sion, still epitomize the model-dependence of the results.
Fig. 1. Parameters M and m for which the toy model is compatible with the data,
with s2 = sin2(θ) varying along the curves, see Eqs. (20), (21). Top: Lyman in the
μp atom and CODATA, shown for the central value and a very asymmetric ±3σ .
Bottom: CODATA substituted for ep scattering, central value and ±1σ (there is no
solution for +3σ ).

2.1. A toy model

The photon propagator in the time-like domain (q2 > 0) has led
to considerable revolutions (e.g. the discovery and interpretation of
the J/Ψ ), as well as interesting challenges, in particular close to its
cut at q2 � 4m2

π . The modeling of the electric and magnetic form
factors G E and G M of protons and neutrons in terms of disper-
sion relations for the photon propagator involves, literally, dozens
of parameters [4]. The form-factor “toy model” I am going to dis-
cuss is not intended to compete in accuracy with the dispersive
approaches, nor to be a realistic description of ep data, but only to
elucidate the current discussion.

In [4], an accurate description of the theoretically-calculated 2π
continuum required products of up to three poles. I parametrize
ρ(r) as an interpolation between the charge densities of a “ρ” sin-
gle pole and a “2π ” dipole:

ρ(r) = 1

D

[
M4e−Mr cos2(θ)

4πr
+ m5e−mr sin2(θ)

8π

]
,

D ≡ M2 cos2(θ) + m2 sin2(θ) (17)

whose two first relevant moments are 〈r0〉 = 1 and

〈
r2〉∣∣

toy = 6
2 2 2

+ 12
2 2 2

. (18)

m tan (θ) + M m + M cot (θ)
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Fig. 2. Low-|q| data, compiled and analyzed by Sick [9]. The lines are my addition. Only r ∼ 0.9 f is bracketed by the data, which are all to one side of r ∼ 3.2 f. The
continuous curve – drawn assuming that the absolute data normalization is not sacred – illustrates a possible shape whose corresponding ρp(r) would have a conventional
〈r2

p〉 and a “large” 〈r3
p〉(2) . Below q ∼ 1 inverse fermi, notice the different averages of the Mainz81 (black) data and the rest.
To introduce the third Zemach moment, let s ≡ sin(θ) and c ≡
cos(θ). Then

〈
r3〉

(2)

∣∣
toy = 3[5mM(8c4M + 21ms4) + 16c2 Hs2]

2mM(c2M2 + m2s2)2
,

H ≡ 2m5 + 4m4M + 6m3M2 + 8m2M3 + 10mM4 + 5M5

(m + M)2
. (19)

We can now check the compatibility of the CODATA result of
Eq. (3) with the Lamb shift result of Eq. (5) in the following way.
Solve the two equations〈
r2

p

〉
(CODATA) = 〈

r2〉∣∣
toy, (20)

Lexp = Lth[〈
r2〉, 〈r3〉

(2)

]∣∣
toy (21)

in M and m for fixed mixing (fixed s2). The results are shown in
the top Fig. 1, while those of a similar exercise with 〈r2

p〉(CODATA)

substituted by 〈r2
p〉(ep) in Eq. (20) are shown in the bottom panel.

From these figures we can draw three conclusions: (1) The sys-
tem of Eqs. (20), (21) is soluble only for s2 � 0.1. A single-pole or
single-dipole are excluded, as expected. (2) The extracted M and m
are not unreasonable. M turns out to be of O(mρ), while m, which
corresponds to a dipole parametrization of “everything but the ρ
pole” is not a good enough simplification, a result with m > 2mπ

would have been nicer. Yukawa intuited pions in a very similar
manner, but only one at a time. (3) All experimental results are
compatible.

3. Conclusions

We face a choice between the following conclusions:

• The experimental results are not right.
• The relevant QED calculations are incorrect.
• There is, at extremely low energies and at the level of accu-

racy of the �p-atom experiments, “physics beyond the stan-
dard model”.
• A single-dipole form factor is not adequate to the analysis of
precise low-energy data.

I have argued that the last choice is the most compelling.
The theoretical and experimental results I have quoted mo-

mentarily culminate 125 years of progress in the understanding of
hydrogen and its muonic sibling (I am setting t = 0 at the discov-
ery date [13] of his famous “series” by the Swiss physicist Johann
Jakob Balmer).

The combination of the very impressive results in Eqs. (3), (5),
(6) yields a value:

[〈
r3

p

〉
(2)

]1/3 = 3.32 ± 0.22 f (22)

with the error dominated by the CODATA uncertainty on 〈r2
p〉. The

value in Eq. (22) looks incredibly large at first, but it is not so un-
expected.

The result Eq. (22) is ρp(r)-independent; to be treated with due
respect. Right after offering excuses, I shall break this rule. The
third Zemach moment is very sensitive to the long-distance part of
ρ(r), compare it to the r3 moments of Eqs. (11), (15). Suppose that
ρ(r) has a “core” and a “tail” contributing 50–50 to the proton’s
charge, and that the tail’s G E (q) is described by a dipole. To what
scale, m, to does this tail correspond? The value of 〈r3

p〉(2) is 1/2 of
the one in Eq. (15). Equate it to Eq. (22) to obtain m 	 245 MeV,
tantalizingly close to the threshold of the proton form factor’s cut
at 2mπ± 	 278 MeV.

4. Discussion

Very soon after “v2” of this Letter appeared in arXiv, a preprint
by Clöet and Miller was posted [14]. These authors find it impossi-
ble to extract a result as large as that of Eq. (22) from ep scattering
data.

A crucial problem in this connection was adroitly emphasized
by Sick [9]. It is very difficult to extract reliable information on
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ρ(r) from its Fourier transform, G E (q)2. The radius of convergence
of the expansion in r from which one extracts 〈r2

p〉 is so small,
that one must use simulations and a continued-fraction expansion
to obtain a stable, numerically-meaningful result not contaminated,
for instance, by the term in 〈r4

p〉. Clearly, if extricating 〈r2
p〉 is deli-

cate, the more so it is to infer 〈r3
p〉(2) [12].

In [9] and [12] the root mean-square radius and the third
Zemach moment are extracted from the same data set. It is cus-
tomary to present the results for two such highly-correlated quan-
tities as contour plots of confidence levels in a plane, to display the
correlation. The authors, however, report only independent uncer-
tainties on each individual quantity. Neither do the authors of [14]
discuss the point that one is dealing with data and their correlated
errors, rather than with exact cancellations in algebraic expres-
sions.

A problem in extracting 〈r3
p〉(2) from ep data is illustrated in

Fig. 2, borrowed from [9]. The data amply bracket a domain around
r ∼ 0.9 f, required to measure an 〈r2

p〉1/2 of this order. Contrari-

wise, these data are all to one side of r ∼ 3.2 f, the 〈r3
p〉1/3

(2) scale in
Eq. (22). A result based on them has to be an extrapolation of data
with a large spread and a poor χ2 per degree of freedom.

The absolute normalization of the data at small q2 (and their
always disdained systematic errors) are a notorious hurdle [9]. No-
tice in particular how, below one inverse fermi, the Mainz81 data
(in black) and the rest (red and green) appear to have different
averages and even diverse trends. If one tolerates a few % uncer-
tainty, the actual G E (q) may correspond to the shape shown in
Fig. 2, reminiscent of the ππ contribution to F1,2 calculated in [4].
The Fourier transform of this shape would have the customary 〈r2

p〉
but a “surplisingly” large 〈r3

p〉(2) .

Theoretical estimates of 〈r3
p〉(2) would be interesting. In their

study [4], Belushkin et al. find that the 2π continuum is a very
significant contribution, rising dramatically below its scale, |q| =
2mπ ∼ 0.71 f−1, and requiring for its parametrization products of
up to three poles. I have argued that the clash between muonic-
hydrogen and ep data may only be apparent. The issue may be
decisively settled only via new ep scattering experiments, or via
a reanalysis of current data, perhaps with a “large” third Zemach
moment as a constraint.

In a third version of their paper, the authors of [14] cogently
argue that a third Zemach moment as large as that of Eq. (22)
is very hard to reconcile with the ep data. This point deserves
further discussion, which I postpone. Notice that the data in
Fig. 2, relative to a straight horizontal line at σexp/σCF = 1, have,
with no further ado, a χ2/dof ∼ 1.65 for 310 degrees of free-
dom [9], that is a p-value (the probability of a result equally or
less compatible with the hypothesis) of 3.9 × 10−12. This casts
doubt even on the corresponding extracted value of the mean
square radius, which could easily be equally compatible with a
number half way between the CODATA and muonichydrogen re-
sults.
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